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The dynamics of subgrid-scale energy transfer in turbulence is investigated in a
database of a planar turbulent jet at Reλ ≈ 110, obtained by direct numerical
simulation. In agreement with analytical predictions (Kraichnan 1976), subgrid-scale
energy transfer is found to arise from two effects: one involving non-local interactions
between the resolved scales and disparate subgrid scales, the other involving local
interactions between the resolved and subgrid scales near the cutoff. The former
gives rise to a positive, wavenumber-independent eddy-viscosity distribution in the
spectral space, and is manifested as low-intensity, forward transfers of energy in the
physical space. The latter gives rise to positive and negative cusps in the spectral eddy-
viscosity distribution near the cutoff, and appears as intense and coherent regions of
forward and reverse transfer of energy in the physical space. Only a narrow band of
subgrid wavenumbers, on the order of a fraction of an octave, make the dominant
contributions to the latter. A dynamic two-component subgrid-scale model (DTM),
incorporating these effects, is proposed. In this model, the non-local forward transfers
of energy are parameterized using an eddy-viscosity term, while the local interactions
are modelled using the dynamics of the resolved scales near the cutoff. The model
naturally accounts for backscatter and correctly predicts the breakdown of the net
transfer into forward and reverse contributions in a priori tests. The inclusion of
the local-interactions term in DTM significantly reduces the variability of the model
coefficient compared to that in pure eddy-viscosity models. This eliminates the need
for averaging the model coefficient, making DTM well-suited to computations of
complex-geometry flows. The proposed model is evaluated in LES of transitional
and turbulent jet and channel flows. The results show DTM provides more accurate
predictions of the statistics, structure, and spectra than dynamic eddy-viscosity models
and remains robust at marginal LES resolutions.

1. Introduction
Large-eddy simulation (LES) provides a promising approach for the computation

of high Reynolds number turbulent flows in complex engineering environments, where
simpler modelling strategies may be inadequate and the high Reynolds number of
the flow prohibits the use of direct numerical simulation (DNS). General reviews are
given in Rogallo & Moin (1984), Lesieur & Metais (1996) and the volumes edited by
Galperin & Orszag (1993) and Metais & Ferziger (1997).
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For incompressible flow, the LES governing equations are given by the filtered
Navier–Stokes and continuity equations
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where

ui(x, t) =

∫
ui(x, t)G(x, x′) dx′ (1.3)

is the resolved velocity field and G(x, x′) is a spatial filter of characteristic width ∆i

in the ith-direction. The effect of the subgrid scales (SGS) on the resolved flow is
captured in the turbulent stress

ηij = uiuj − uiuj , (1.4)

which is unknown and must be parameterized in terms of the resolved velocity field
to close the set of equations (1.1) and (1.2). Alternatively, as shown by Leonard (1974)
and Germano (1986), the turbulent stress ηij can be decomposed into a resolvable
‘Leonard stress’, Lij = uiuj − uiuj , and a true subgrid-scale stress, τij = ηij − Lij , and
the modelling applied only to τij . For sharp (cutoff/Fourier) filters, τij = uiuj − uiuj
and equation (1.1) can be written as
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Most existing SGS models are of the eddy-viscosity type and assume a linear
gradient transport hypothesis to model the turbulent stress as

η∗ij = −2νtS ij , (1.6)

where Sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) is the resolved deformation tensor, νt is the eddy

viscosity, and η∗ij = ηij − 1
3
δijηkk denotes the deviatoric part of the stress tensor. In the

most commonly used eddy-viscosity model, developed by Smagorinsky (1963), the
eddy viscosity is parameterized in terms of the magnitude of the resolved deformation
tensor and the effective filter width according to

νt = (CS∆)2|S |, (1.7)

where |S | = (2SijS ij)
1/2 and CS is a model coefficient. Alternative formulations

parameterize νt in terms of the resolved vorticity field (Kwak, Reynolds & Ferziger
1975), the subgrid-scale turbulence kinetic energy (Schumann 1975), or the local
second-order structure function of the resolved velocity field (Metais & Lesieur 1992).

Eddy-viscosity models are generally constructed to account for the net subgrid-
scale dissipation only in a mean or volume-averaged sense. As such, they represent
a parameterization of the average eddy viscosity in the resolved scales, not the local
and instantaneous νt (Lilly 1967; Leslie & Quarini 1979). Many problems arise when
the average nature of such parameterizations is ignored and the models are applied
to the local eddy-viscosity. In particular, at a local level, eddy-viscosity models show
little correlation with the actual subgrid-scale stresses in a priori tests (Clark, Ferziger
& Reynolds 1979; Bardina, Ferziger & Reynolds 1980; Horiuti 1989; Domaradzki,
Liu & Brachet 1993; Domaradzki et al. 1994; Liu, Meneveau & Katz 1994). This
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is primarily due to the inherently dissipative nature of these models, which make
them ill-suited to the representation of the local reverse transfers (backscatter) of
energy from the subgrid to the resolved scales of motion. This local backscatter is an
important feature of subgrid-scale energy transfer, and can be quite significant (Leslie
& Quarini 1979; Piomelli et al. 1991; Domaradzki et al. 1993, 1994). Recent dynamic
formulations of eddy-viscosity parameterizations (Germano et al. 1991; Lilly 1992;
Ghosal et al. 1995; Piomelli & Liu 1995; Meneveau, Lund & Cabot 1996), while
making the models more robust, have not resolved either of these problems. In
essence, what all these dynamic formulations have re-confirmed is that eddy-viscosity
parameterizations are applicable only in an average sense, always requiring some
sort of averaging on the model coefficient in order to retain the dissipative nature
of the model and avoid numerical instability. Local backscatter is either ignored in
dynamic formulations or is introduced through an additional stochastic force in the
LES equations (Bertoglio 1985; Chasnov 1991; Leith 1990; Mason & Thomson 1992;
Schumann 1995; Carati, Ghosal & Moin 1995). However, such a representation of
backscatter, as a random force uncorrelated from one time-step to the next, is not
consistent with the known physics of backscatter and has been shown to make little
difference in the predicted statistics in LES computations (Carati et al. 1995). Despite
these limitations, eddy-viscosity models can provide fairly accurate predictions of
the mean flow statistics in LES due to their ability to properly account for the net
SGS dissipation. Their main drawback lies in their high resolution requirements and
difficulty in capturing the structure of the flow.

Similarity models provide an alternative class of SGS parameterizations. Pioneered
by Bardina et al. (1980) for application with graded filters, these models utilize the
high correlations observed between the actual SGS stresses and the stresses arising
from the smallest of the resolved scales to approximate the SGS stress tensor in terms
of the stresses arising from the resolved scales. In the similarity model of Bardina et
al. (1980) the SGS stress is modelled as

ηij ≈ uiuj − uiuj , (1.8)

which is equivalent to approximating ηij by Lij . A number of generalizations of this
parameterization have been proposed in recent years (Liu et al. 1994; Salvetti &
Banerjee 1995; Shah & Ferziger 1995; Domaradzki & Saiki 1997). These can be
broadly represented as

ηij ≈ CL(ũ∗i u∗j − ũ∗i ũ∗j ), (1.9)

where CL is a model coefficient, tilde denotes a filter either identical to the LES filter
or one similar in shape but of larger width (typically of scale 2∆), and u∗i is either
identical to ui or denotes a higher-order approximation or estimation of ui. Similarity
models naturally account for backscatter and give high correlations with the actual
SGS stresses in a priori tests. Their main shortcoming is that they are generally
not adequately dissipative. This problem can be alleviated by using extensions of the
resolved velocity field in the similarity expression (Shah & Ferziger 1995; Domaradzki
& Saiki 1997) or by combining the similarity model with an eddy-viscosity term. A
number of such mixed models have been proposed in recent years (Bardina et al.
1980; Zang, Street & Koseff 1993; Salvetti & Banerjee 1995; Horiuti 1993, 1997).
In LES applications, mixed models perform comparably with or better than pure
eddy-viscosity models. However, because the improvements are not dramatic and the
results depend on the type of filter used, mixed models have so far gained only limited
popularity.
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The limitations of existing SGS models suggest that a better understanding of the
physics of SGS energy transfer and of the phenomenon of backscatter, in particular,
is needed before more faithful SGS parameterizations can be developed. Improved
models could potentially lead to a relaxation of the stringent resolution requirements
of LES and provide LES with the capability to make structural, in addition to
statistical, predictions of the large-scale motions. The energy exchanges between the
resolved and subgrid scales of motion can be studied using analytical theories of
turbulence (Kraichnan 1976, Leslie & Quarini 1979, Chollet & Lesieur 1981, Lesieur
1991, Zhou & Vahala 1993), direct numerical simulations (Clark et al. 1979, Bardina
et al. 1980, Piomelli et al. 1991, Meneveau 1991, Domaradzki et al. 1987, 1990, 1993,
1994, Ohkitani & Kida 1992, Piomelli et al. 1996), or experiments (Liu et al. 1994,
O’Neil & Meneveau 1997). These studies have revealed many important characteristics
of SGS energy transfer. However, the implementation of these ideas into SGS models
has been limited.

The objective of the present study is to provide a better understanding of the
dynamics of SGS energy transfer in turbulent shear flows and to incorporate this
understanding into improved SGS models for LES of turbulence in engineering
applications. The studies are based on an analysis of a database of a temporally-
growing planar turbulent jet at Reλ ≈ 110, obtained by direct numerical simulation
(DNS). The organization of the paper is as follows. In § 2 the numerical database of
the turbulent jet and the methods of data analysis are briefly reviewed. The dynamics
of SGS energy transfer in the spectral space and physical space are discussed in
§ 3 and § 4. In § 5 a subgrid-scale parameterization incorporating these dynamics is
proposed. The performance of the proposed model is evaluated by a priori tests in § 6
and by LES of transitional and turbulent flows in § 7. The extension of the model to
graded filters is discussed in § 8. Conclusions and a summary are given in § 9.

2. Numerical database and data analysis
2.1. The DNS database of the jet

Jet flow was chosen as a prototype turbulent shear flow in the study of subgrid-scale
interactions because of its simplicity and the relatively high Reynolds numbers which
can be attained in this flow by DNS. Various details of the simulation as well as a
discussion of the evolution, statistics and structure of the jet is given in Ansari (1993).
Here we briefly summarize the main features of the flow which are relevant to the
present discussion.

The jet is assumed to be periodic in the streamwise (x) and spanwise (y) directions
and infinite in extent in the lateral (z) direction. The simulations were performed with a
resolution of 128×128×256 de-aliased modes using standard pseudo-spectral methods,
and employed Fourier series in the homogeneous directions and mapped Chebyshev
polynomials in the lateral direction. The computations were started from a laminar jet
with a blunt (hyperbolic-tangent) velocity profile with characteristic centreline velocity
U0 and jet half-width z0, on which an infinitesimal random noise disturbance field
was superimposed. The jet undergoes transition to turbulence between the times of
30 < tU0/z0 < 70 and equilibrates to a stationary turbulent state with self-preserving
velocity profiles thereafter. The subgrid-scale interactions reported in this paper are
from the time tU0/z0 = 100. At this time, the jet had a turbulent Reynolds number of
Reλ ≈ 110 based on the lateral Taylor microscale, and a corresponding bulk Reynolds
number of Reb = Ucδ/ν = 6800 based on the jet centreline velocity and full jet width.



Subgrid-scale interactions and their modelling 87

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

(d )

z/zm

〈w
′2

〉1/
2 /

U
c

0.04

0

–0.04

–3 –2 –1 0 1 2 3

(e)

z/zm

–
〈u

′ w
′ 〉/

U
c2

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

(b)

〈u
′2

〉1/
2 /

U
c

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

(c)
〈v

′2
〉1/

2 /
U

c

1.2

0.8

0.4

0
–3 –2 –1 0 1 2 3

(a)

z/zm

U(z)

Uc

Figure 1. Mean turbulence statistics in the fully developed turbulent temporally growing planar jet
compared to experimental measurements in spatially growing turbulent planar wakes: ——, DNS;
×, wake data of Townsend (1949); − · − · −, Gaussian curve (2.1).

The effective grid spacing at this time was on the order of 4 Kolmogorov scales in the
homogeneous (x and y) directions and 2 Kolmogorov scales in the lateral direction.

Figure 1 shows the mean turbulence statistics in the jet at tU0/z0 = 100. The mean
velocity profile is in agreement with the Gaussian distribution

U(z, t)

Uc(t)
= e−0.693(z/zm)2

, (2.1)

which represents the analytical mean velocity profile in a self-preserving temporally
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Figure 2. Three-dimensional spectra of (a) kinetic energy, and (b) kinetic energy dissipation in the
jet obtained using the Fourier and wavelet representations: +, Fourier; �, wavelet.

growing planar turbulent jet with a constant eddy viscosity. The statistics are also
in reasonably good agreement with experimental measurements in spatially growing
planar turbulent far wakes (Townsend 1949), whose evolution and governing equations
are analogous to the temporally growing jet.

The three-dimensional kinetic energy and dissipation spectra in the jet at tU0/z0 =
100 are shown in figures 2(a) and 2(b). The spectra were computed by truncating the
domain in the lateral direction to −3.2 < z/zm < 3.2, interpolating the data onto a
uniform Fourier grid using spectral interpolation, and computing the spectra using
the conventional definitions. The spectra are normalized using the average rate of
kinetic energy dissipation, ε, in the truncated jet and the corresponding Kolmogorov
scale, η = (ν3/ε)1/4. Over the range of wavenumbers 0.07 < kη < 0.2 the energy
spectrum conforms to the inertial k−5/3 law with a Kolmogorov constant of CK = 1.4,
which is in good agreement with the value CK ≈ 1.5 observed in experimental studies
(Monin & Yaglom 1981). The dissipation spectrum attains its peak at kη ≈ 0.2, in
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Figure 3. Scaling exponents of the velocity structure functions, ζn, for even n: �, DNS of planar
turbulent jet; �, DNS of isotropic turbulence by Vincent et al. (1991); +, measurements in a round
jet at Reλ = 852 by Anselmet et al. (1984); ——, Kolmogorov (1941) theory; - - -, Kolmogorov
(1961) theory; · · · · · ·, β-model.

agreement with the results obtained in other numerical simulations of turbulence (e.g.
Kida & Murakami 1987; Domaradzki 1992) and the wavenumber of peak dissipation
predicted by Pao’s (1965) spectrum with a Kolmogorov constant of 1.4.

The inertial-range properties of the jet flow were further characterized by examining
the scaling exponents of the longitudinal velocity structure functions, ζn, defined as

〈|∆u′(rx)|n〉V = Kn(〈ε〉V rx)ζn , where 〈|∆u′(rx)|n〉V = 〈|u′(x+ rx)− u′(x)|n〉V and rx is a
longitudinal separation in the inertial range. The scaling exponents were computed
using the so-called ‘direct method’ (Anslemet et al. 1984), from the slopes of linear
regression best fits to logarithmic plots of 〈|∆u′(rx)|n〉V plotted as a function of rx for
rx in the inertial range (15 < rx/η < 45). Figure 3 shows the scaling exponents for
even-ordered moments of the longitudinal velocity differences in the jet. Also shown
are the scaling exponents reported by Anselmet et al. (1984) in an axisymmetric jet at
Reλ ≈ 850, by Vincent & Meneguzzi (1991) in a numerical database of homogeneous
turbulence at Reλ ≈ 150, and a number of classical models: Kolmogorov’s (1941)
model (ζn = n/3), Kolmogorov’s (1961) log-normal model (ζn = 1/3n− 1/18µn(n− 3),
with µ = 0.2) and the β-model of Frisch, Sulem & Nelkin (1978) (ζn = 1/3n
− 1/3µ(n− 3)). The agreement between the scaling exponents in the present jet flow
and measurements in higher Reynolds number flows gives us confidence that, despite
the relatively short inertial range of the present database, the observed dynamics is
representative of higher Reynolds number flows for which subgrid-scale models are
intended.

2.2. Data analysis

Subgrid-scale interactions were studied using a combination of Fourier and wavelet
methods. Fourier analysis is the traditional tool for investigating the spectral dynamics
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of turbulence and, as such, allows comparisons with many known analytical results.
The main limitation of a Fourier analysis is that the spectral information it supplies
represents the average over the flow domain and does not contain information on
the spatial variability of various spectral distributions. This information is readily
available in a wavelet representation. Because of this and other desirable properties,
wavelets have found extensive application in the analysis, modelling, and computation
of turbulence in recent years (e.g. Farge 1992; Farge et al. 1996, and references therein).
In this study, the wavelet analysis is used primarily to investigate the breakdown of
the spectral eddy viscosity into forward and reverse transfers and to characterize
the nonlinear interactions which contribute to these transfers. While it is possible
to obtain this information using Fourier methods (Domaradzki et al. 1993), such
an analysis requires examining the individual triad interactions and has not been
attempted here.

Our methodology for the wavelet analysis is similar to that proposed by Mallat
(1989) and Meneveau (1991). Here we only briefly summarize the features relevant
to the present discussion. In the wavelet representation, flow quantities such as the
disturbance velocity u′α(x) are expressed in terms of discrete orthonormal wavelet
basis functions (Daubechies 1988; Mallat 1989; Meneveau 1991)

u′α(x) =

7∑
q=1

N∑
n=1

∑
i

u′(n,q)
α [i]Ψ (n,q)(x− 2nhi), (2.2)

where n denotes the scale measured in octave bands, i is the three-dimensional
position index in a box of mesh size 2nh, and h denotes the mesh size at the smallest
scale. The summation over the index q arises from the method used to construct
the three-dimensional wavelet basis functions Ψ (n,q)(x− 2nhi) in terms of products of
one-dimensional wavelets along the three Cartesian directions. We use the 8-point
orthonormal wavelets with compact support suggested by Daubechies (1988) for these
one-dimensional wavelets.

Using the wavelet representation, various spectral flow quantities can be computed
while retaining information on their spatial distributions. For example, the local
kinetic energy at scale n and location 2nhi can be computed as

e(n)[i] =
1

2

7∑
q=1

u′(n,q)
α u′(n,q)

α . (2.3)

Quantities such as this can be examined directly in the mixed spectral/physical
representation or converted to traditional spectral quantities. For instance, one can
use (2.3) to compute the energy spectrum as

Ew(k) =

∑
i e

(n)[i]

23Nk ln (2)
, (2.4)

where k = 2π/2nh is the effective wavenumber, ∆k = k ln (2) is the effective bandwidth,
and 23N is the total number of points in the domain. Figure 2(a) shows the comparison
between the kinetic energy spectra computed by the wavelet and Fourier methods.
The two spectra are in good general agreement, verifying the accuracy of the wavelet
analysis. The small differences between the two spectra observed at high wavenumbers
reflects the different bandwidths over which the spectral energy density is computed
in the two representations.
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3. Subgrid-scale interactions in the spectral space
To study the subgrid-scale interactions, a sharp (Fourier) filter is employed to

divide the wavenumber space into two regions: L corresponding to |k| 6 km and
denoting the large or resolved scales, and S corresponding to |k| > km and denoting
the small or subgrid scales. The dynamics of subgrid-scale energy transfer in the
spectral space can be most conveniently analysed by examining the characteristics of
the spectral eddy viscosity, ν(k|km), as introduced by Kraichnan (1976). In the Fourier
representation, the spectral eddy viscosity is given by

ν(k|km) = −TS (k|km)

2k2E(k)
, k 6 km, (3.1)

where TS (k|km) represents the transfer of energy to a resolved scale k due to nonlinear
interactions with scales larger than km (see Appendix A). The analogous quantity in
the wavelet representation is the spectral eddy viscosity acting on a resolved scale n
at location 2nhi due to dynamical interactions with scales larger than m. This can be
defined as

ν(n|m)[i] = − t
(n|m)
s [i]

d(n)[i]
, (3.2)

where t
(n|m)
s [i] denotes the subgrid-scale transfer of energy to scale n at location 2nhi

and d(n)[i] =
∑7

q=1 u
′
α

(n,q)[i]{−∇2u′α}(n,q)[i]. The average of ν(n|m)[i] over all physical
locations is the wavelet equivalent of the spectral eddy viscosity

νw(k|km) =
1

23(N−n)
∑
i

ν(n|m)[i], (3.3)

where k = 2π/2nh and km = 2π/2mh. The wavelet representation also provides in-
formation on the breakdown of ν(k|km) into forward, ν+

w (k|km), and reverse, ν−w (k|km),
contributions:

ν+
w (k|km) =

1

23(N−n)
∑
i

ν(n|m)[i], ν(n|m) > 0; (3.4)

ν−w (k|km) =
1

23(N−n)
∑
i

ν(n|m)[i], ν(n|m) < 0. (3.5)

Figure 4 shows the distributions of ν(k|km) in the jet obtained using the Fourier and
wavelet methods for two values of the cutoff wavenumber: kmη = 0.18 in the inertial
range, and kmη = 0.39 in the dissipation range. Also shown are the breakdown
of νw(k|km) into ν+

w (k|km) and ν−w (k|km), and the analytical prediction of ν(k|km) by
Kraichnan (1976) based on the test-field model assuming isotropic turbulence with an
infinitely long inertial-range spectrum and a Kolmogorov constant of 1.4. A similar
analytical distribution is also predicted by the eddy-damped quasi-normal Markovian
(EDQNM) theory (Chollet & Lesieur 1981; Lesieur 1991). The Fourier and wavelet
results are in close agreement with each other and with the analytical prediction of
Kraichnan (1976). As before, an exact agreement between the Fourier and wavelet
results cannot be expected since the latter represents the average of ν(k|km) over a
wider band of wavenumbers than the former. One consequence of this is that the
cusps in the curve of ν(k|km) become less pronounced in the wavelet representation.
The spectral eddy viscosity in the jet also agrees qualitatively with earlier results
reported in numerical databases of isotropic turbulence (Domaradzki et al. 1987,
1993; Lesieur 1991; Meneveau 1991). The main difference between the present results
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Figure 4. The spectral eddy viscosity, ν(k|km), acting on a scale k due to dynamical interactions with
scales larger than km computed using the Fourier and wavelet representations for (a) kmη = 0.18 (in
the inertial range), and (b) kmη = 0.39 (in the dissipation range). Also shown are the breakdown
of νw(k|km) into forward and reverse contributions. − −4− −, ν(k|km) from Fourier analysis;
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w (k|km); −−�−−, ν−w (k|km); − · − · −, analytical prediction of ν(k|km) from
Kraichnan (1976).

and those reported earlier is in the value of the low-wavenumber asymptote of the
spectral eddy viscosity. In the present results, this asymptote has a finite value, in
agreement with analytical predictions, whereas earlier studies showed a near-zero
asymptote, reflecting the absence of a true inertial range in the databases used in
those studies.

A number of important dynamical features of subgrid-scale energy transfer are
displayed in the characteristics of ν(k|km), as noted by Kraichnan (1976) and others
(Leslie & Quarini 1979; Chollet & Lesieur 1981). In particular, the eddy viscosity
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exhibits a dual character. For k � km, the spectral eddy viscosity asymptotes to
a constant value and is primarily composed of low-intensity forward transfers of
energy. By construction, these transfers represent non-local energy transfers between
a resolved mode k � km and two subgrid modes p � k and q � k. The presence
of a large separation of scales, combined with the asymptotic and positive nature
of the spectral eddy viscosity in this regime, suggests that an eddy viscosity model
should be able to accurately represent this portion of the subgrid-scale interactions. A
different behaviour is observed near the cutoff. Here ν(k|km) rises sharply to a cusp and
is composed of both positive and negative contributions. The dominant dynamical
interactions at work here are local triadic interactions between a resolved mode k ∼ km
and subgrid modes p ∼ q ∼ km. These interactions represent local transfers of energy
and, therefore, cannot be faithfully represented by an eddy-viscosity model. The cusps
are not an intrinsic feature of turbulence, but a manifestation of the absence of the
modes k > km in the dynamics of the resolved scales. If the additional modes were
present, so that the triadic interactions could be summed over all possible triads, the
cusps would disappear and the spectral eddy viscosity would revert to that observed
at low wavenumbers. Therefore, the intensity of the cusps is strongly dependent upon
the characteristics of the filter used.

For modelling, it is important to establish which range of subgrid wavenumbers
contributes to these local interactions. This can be determined by examining the
subgrid-scale energy transfer in truncated databases of the velocity field, obtained
from the original field by setting all modes with a wavenumber greater than a
prescribed value kt equal to zero. The subgrid-scale energy transfer in these truncated
databases would then represent the interactions between the resolved modes |k| 6 km
and only the range of subgrid modes km < |k| 6 kt. Figure 5 shows νw(k|km; kt) in
the jet for kmη = 0.18 and three values of kt/km = 2.0, 1.5, and 1.25. Also shown
are νw(k|km) in the original (non-truncated) field, and the breakdown of each into
positive (ν+

w ) and negative (ν−w ) contributions. For all values of 1.25 < kt/km < 2.0,
eliminating all subgrid modes with a wavenumber greater than kt affects only the
non-local forward transfers of energy, resulting in a uniform downward shift of the
curves of νw and ν+

w from their original values. However, the cusps in the curves
of νw and ν+

w and the entire curve of ν−w remain unaffected. This establishes the
degree of locality of the interactions which contribute to the cusps, and shows
that the predominant contributions arise from only a very narrow band of subgrid
wavenumbers corresponding to km < k < 1.25km, not the whole range km < k < 2km
as suggested in the past (Domaradzki & Saiki 1997). This opens up new possibilities
for modelling these local interactions, as discussed in § 5.

Another issue is the relative importance of the local and non-local interactions in
the overall dynamics of transfer. This can be established by examining the quantity
(Kraichnan 1976)

Πsg(k|km) =

∫ km

k

TS (k′|km) dk′∫ km

0

TS (k′|km) dk′
, (3.6)

which represents the fraction of subgrid-scale energy transfer arising from interactions
between the resolved scales k < k′ < km and the entire subgrid scales. Figure 6 shows
Πsg(k|km) in the jet for the two cutoff wavenumbers kmη = 0.18 and kmη = 0.39.
In each case, more than half of the net transfer arises from interactions between
the subgrid scales and the highest 25% of the resolved modes (0.75 < k/km < 1.0),



94 R. Akhavan, A. Ansari, S. Kang and N. Mangiavacchi

ν(
k

|k
m

)/
√E

(k
m

)/
k m

ν(
k

|k
m

)/
√E

(k
m

)/
k m

kη
10–2

1.2

0·8

–0.4

10–1 100

0

0·4

(c)

10–2

1.2

0·8

–0.4

10–1 100

0

0·4

(b)

10–2

1.2

0·8

–0.4

10–1 100

0

0·4

(a)

ν(
k

|k
m

)/
√E

(k
m

)/
k m

Figure 5. For caption see facing page.
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Figure 6. The fraction of subgrid-scale energy transfer arising from dynamical interactions between
the subgrid scales and the resolved scales k < k′ < km: ——, kmη = 0.18; · · · · · ·, kmη = 0.39.

i.e. from local interactions near the cutoff. The observed dominance of local energy
exchanges in the overall dynamics of transfer is consistent with classical models of
the energy cascade (Tennekes & Lumley 1972) and results from recent investigations
of detailed triadic interactions in turbulence (Domaradzki & Rogallo 1990; Ohkitani
& Kida 1992; Waleffe 1992; Zhou 1993), which have all shown the predominance of
local energy exchanges in the dynamics of turbulence.

4. Subgrid-scale interactions in the physical space
In the physical space, the transfer of energy between the subgrid scales and the

resolved flow can be represented as (see Appendix B)

TS (x, t) = − ∂

∂xβ
(uLα ταβ)− ∂

∂xα
(uLα p

L|S)− εS (x, t), (4.1)

where

εS (x, t) = −ταβSLαβ (4.2)

denotes the subgrid-scale dissipation, ταβ(x, t) = (uαuβ − uLα uLβ )L is the (true) subgrid-

scale stress, and SLαβ = 1
2
(∂uLα /∂xβ + ∂uLβ /∂xα) is the large-scale deformation tensor.

Studies of subgrid-scale energy transfer in physical space have traditionally ignored
the effect of the redistribution terms in (4.1) and concentrated on the properties

Figure 5. The spectral eddy-viscosity, νw(k|km; kt), acting on a scale k due to dynamical interactions
with wavenumbers km < k′ 6 kt for kmη = 0.18 and (a) kt/km = 2.0, (b) kt/km = 1.5, and (c)
kt/km = 1.25. Also shown are νw(k|km) in the full field and the breakdown of νw(k|km; kt) and
νw(k|km) into forward and reverse contributions. ——,� νw(k|km; kt); · · · · ·,� ν+

w (k|km; kt); − −�− −,
ν−w (k|km; kt); ——, νw(k|km); · · · · · ·, ν+

w (k|km); −−−, ν−w (k|km).
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Figure 7. Spatial distributions of (a–c) subgrid-scale dissipation, εS , and (d–f) resolved-scale
vorticity magnitude, |ωL|, in a planar cut through the jet for three cutoff wavenumbers in the
inertial range: (a, d) kmη = 0.18; (b, e) kmη = 0.135; (c, f) kmη = 0.08.
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of the subgrid-scale dissipation. In keeping with this tradition, we will also base
our discussion on the subgrid-scale dissipation, εS (x, t), instead of the total transfer,
TS (x, t).

Figure 7 shows the spatial distributions of subgrid-scale dissipation, εS (x, t), in a
planar cut through the jet for three cutoff wavenumbers kmη = 0.18, 0.135, and 0.08
(all in the inertial range). Also shown are the spatial distributions of the resolved-
scale vorticity field in the same planes. The subgrid-scale dissipation field is composed
of coherent regions of intense forward and reverse energy transfer, which are su-
perimposed on a background of low-intensity forward transfer. The former are the
physical-space embodiments of the cusps in the spectral eddy viscosity, the latter
represent the low-wavenumber asymptote. The intense regions of forward and reverse
transfer have a scale on the order of the width of the cutoff filter and are spatially
correlated with the organized vortical structures at that scale, occurring at the periph-
ery of these structures. This suggests the mutual straining of these vortical structures
as a possible origin of these transfers. The coherent and scale-dependent nature of
these transfers implies that they cannot be modelled as a stochastic force as has been
suggested in a number of recent studies (Bertoglio 1985; Chasnov 1991; Leith 1990;
Mason & Thomson 1992; Schumann 1995; Carati et al. 1995).

The dynamical origin of these intense transfers can be determined by examining
the structure of the subgrid-scale dissipation field, εtS (x, t) = −τtαβSLαβ , in truncated

databases of the velocity field. Here, τtαβ(x, t) = (ǔαǔβ−uLα uLβ )L represents the subgrid-
scale stress in the truncated database and ǔα(x, t) is the truncated velocity field,
obtained from the full field by setting all modes with a wavenumber greater than
kt equal to zero. Figure 8 shows εtS (x, t) with kmη = 0.18 and kt/km = 2.0, 1.5, and
1.25 in the same plane as that shown in figure 7(a). Also shown is the structure
of the residual field, εrS (x, t) = εS − εtS in the same planes. For all three values of
kt/km, the subgrid-scale dissipation in the truncated field is visually indistinguishable
from that in the non-truncated field (shown in figure 7a). This indicates that these
intense transfers are the result of interactions between the resolved scales and only
the narrow band of subgrid wavenumbers between km < k < 1.25km. The additional
modes k > 1.25km mainly contribute to the background forward transfer.

These conclusions can be quantified by examining the profiles of the mean subgrid-
scale dissipation fields 〈εS〉 and 〈εtS〉 in the jet. Figure 9 shows 〈εS〉 and 〈εtS〉, together
with the breakdown of each into forward and reverse transfers, for kmη = 0.18
and kt/km = 2.0, 1.5, and 1.25. For all three kt/km, elimination of the subgrid-scale
modes k > kt reduces the background forward transfer from its full field value. For
kt/km = 1.5, the modes k > kt contribute 30% of the net subgrid-scale dissipation,
while for kt/km = 1.25 they contribute 40%. However, the mean distribution of
backscatter is virtually unchanged from that in the full field. This, once again, verifies
that backscatter is the result of local interactions between the resolved scales and
only a very narrow band of subgrid wavenumbers between km < k < 1.25km.

5. Implications for subgrid-scale modelling
The results discussed in § 3 and § 4 imply that in modelling the subgrid-scale

interactions two separate effects should be included: one representing the non-local
interactions, which give rise to the low-wavenumber asymptote of the spectral eddy
viscosity and the low-intensity forward transfers of energy in physical space; the
other representing the local interactions near the cutoff, which give rise to the cusps
in the spectral eddy viscosity and the intense and coherent regions of forward and
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Figure 8. Spatial distributions of (a–c) the truncated subgrid-scale dissipation, εtS , and (d–f) the
residual fields, εrS = εS − εtS , in the jet for kmη = 0.18 and (a, d) kt/km = 2.0; (b, e) kt/km = 1.5; (c, f)
kt/km = 1.25.



Subgrid-scale interactions and their modelling 99

z/z0

1

–10
–1

5–5 0 10

0

2

〈εS〉
ε

Figure 9. Profiles of the mean subgrid-scale dissipation, 〈εS 〉 and 〈εtS 〉, in the full and truncated
databases of the velocity field in the jet for kmη = 0.18 and kt/km = 2.0, 1.5, and 1.25. Also shown
are the breakdown of 〈εS 〉 and 〈εtS 〉 into forward (denoted by 4) and reverse (denoted by 5)
transfers of energy. ——, Full field; −−−, kt/km = 2.0; · · · · · ·, kt/km = 1.5; − · −, kt/km = 1.25.

reverse transfer in the physical space. The former can be modelled by an eddy-
viscosity parameterization, the latter can be represented by the interactions between
the resolved scales and a narrow band of subgrid wavenumbers between km < k < kt,
where kt/km ∼ 1.25. This suggests a ‘two-component’ parameterization of the (true)
subgrid-scale stress of the form

τ∗αβ = −2νtS
L
αβ + τ′∗αβ, (5.1)

where ∗ denotes the deviatoric part of the stress tensor, νt is an eddy viscosity,
SLαβ = 1

2
(∂uLα /∂xβ+∂uLβ /∂xα) is the large-scale strain rate, and τ′αβ represents the (true)

subgrid-scale stress arising from interactions with the subgrid modes km < k < kt. In
this section, we describe the development of this model for sharp (Fourier) filters. The
extension to graded filters is discussed in § 8.

For sharp (Fourier) filters, the true SGS stress is given by ταβ = (uαuβ − uLα uLβ )L
and τ′αβ given by the SGS stress arising from the truncated velocity field

τ′αβ = τtαβ = (ǔαǔβ − uLα uLβ )L, (5.2)

where ǔα(x, t) represents the velocity field truncated to (filtered at) kt.
The parameterization of νt can be obtained from the low-wavenumber asymptote

of the spectral eddy viscosity. Since this asymptote has a constant magnitude, its
physical-space representation is also given by

νt = ν(0|km). (5.3)

The results shown in figure 4 as well as those provided by analytical theories of
turbulence (Kraichnan 1976; Chollet & Lesieur 1981) show this low-wavenumber
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asymptote to have a magnitude

ν(0|km) = 0.44C
−3/2
K

√
E(km)

km
, (5.4)

where E(km) is the turbulence kinetic energy at scale km and CK is the Kolmogorov
constant. This expression becomes equivalent to the classical Smagorinsky (1963)
model if E(km) is expressed in terms of the large-scale strain-rate tensor. While this
is the representation adopted in this study, this approach is not unique and other
eddy-viscosity models (e.g. Kwak et al. 1975; Metais & Lesieur 1992) can be derived
in a similar fashion by expressing E(km) in terms of other large-scale properties of the
flow. To recover the Smagorinsky model, we assume an LES cutoff km in the inertial
range such that E(km) = CKε

2/3k
−5/3
m and note that the average rate of kinetic energy

dissipation can be expressed as ε = C ′ν(0|km)〈2SLαβSLαβ〉V . Thus, equation (5.4) can be
written as

νt = ν(0|km) = C ′′∆2〈2SLαβSLαβ〉1/2V , (5.5)

where C ′′ = C ′1/20.443/2/(π2C
3/2
K ), ∆ = π/km, and 〈·〉V denotes a volume average. This

reduces to the classical Smagorinsky (1963) model, if it is further assumed that at
the scale km of the LES filter the volume average of 〈2SLαβSLαβ〉1/2V is not too different
from its local value |SL| = (2SLαβSLαβ )1/2. With this approximation, the ‘two-component’
parameterization (5.1) and (5.2) can be written as

τ∗αβ = −2C∆
2|SL|SLαβ + (ǔαǔβ − uLα uLβ )L∗, (5.6)

or in the more customary notation of LES, where the large-scale quantities are
denoted by an overbar,

τ∗ij = −2C∆
2|S |Sij + (ǔiǔj − uiuj)∗, (5.7)

where τij = uiuj − uiuj is the true subgrid-scale stress and the overbar denotes a sharp
(Fourier) filter at km.

Implicit in this parameterization is the assumption that the spatial variability
in the subgrid-scale transfer is captured in the local-interactions term τ′ij , so that
νt or C are nearly constant in space. To test the validity of this hypothesis, we
compare the p.d.f. of the model coefficient, C , obtained in the jet with the ‘two-
component’ parameterization (5.7) to the p.d.f. of C based on a pure Smagorinsky
parameterization. Figure 10 shows these results for a cutoff filter at kmη = 0.18 and
three values of kt/km = 2.0, 1.5 and 1.25. The model coefficients were computed using
a least-squares method according to

C = − (τij − τ′ij)Sij
2∆2|S |SijS ij ,

where τ′ij is set equal to zero in the pure Smagorinsky parameterization. For all three
values of kt/km, the inclusion of the local-interactions term results in a considerably
narrower distribution of model coefficient values than a pure Smagorinsky model,
verifying that the model is consistent with its underlying assumptions.

In applying the ‘two-component’ parameterization (5.7) to LES, one is faced with
two problems: (i) the subgrid modes km < k < kt required for the computation of ǔi
are not available in a LES with a sharp (Fourier) filter where the LES filter is at km,
and (ii) the coefficient C is not known. The first issue can be resolved by exploiting
two properties of the local interactions, namely that they involve only a very narrow
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Figure 10. Probability density function of the model coefficient C from parameterization (5.7)
compared to a pure Smagorinsky parameterization for kmη = 0.18 and ——, kt/km = 2.0; − − −,
kt/km = 1.5; · · · · ·, kt/km = 1.25; − · −, Smagorinsky model.

band of subgrid wavenumbers, and arise from mutual straining of coherent eddies
so that they have similar structures at neighbouring cutoffs. The latter feature is
demonstrated in the structure of the subgrid-scale dissipation fields at neighbouring
cutoffs kmη = 0.18, 0.135 and 0.09 shown in figure 7 (the full-domain correlation
coefficients between the dissipation fields at successive cutoffs is ∼ 0.35). Together,
these two features suggest that the local interactions at cutoff km can be approximated

by those at a neighbouring cutoff k̃ = km/b where b > 1. In other words, the local
interactions between the resolved scales k < km and subgrid modes km < k < kt can

be approximated by those between the resolved scales k < k̃ and k̃ < k < km. The
value of b should be large enough so the local interactions are properly represented,

but small enough so the two fields at k̃ and km remain correlated. Based on the
results presented in figures 5–9, these requirements are satisfied with b ∼ 1.25. In our
computations we use a value of b = 4

3
. However, the results are not too sensitive to

the precise value of b.
With these approximations, equation (5.7) can be replaced with

τ∗ij = −2C∆
2|S |Sij + (ũiuj − ˜̃uiũj)∗, (5.8)

where the tilde denotes a sharp (Fourier) filter at k̃. The model coefficient C in (5.8)
is determined using the dynamic procedures suggested by Germano et al. (1991) and

Lilly (1992). To implement this, a test filter is applied at the resolved scale k̂ = km/a,
where a is taken to be 2.0 as recommended by Germano et al. (1991), and the subgrid-

scale stress Tij = ûiuj − ̂̂uiûj at this scale is parameterized using the ‘two-component’
model (5.7)

T ∗ij = −2C∆̂2|Ŝ |Ŝij + (ûiuj − ̂̂uiûj)∗, (5.9)

where ∆̂ = π/k̂. Note that in parameterizing Tij , the modes k̂ < k < km required
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for the construction of the local-interactions term, T ′ij , are available and there is no
need to approximate this term as was done for τij . The coefficient C(x, t) is then
determined using the least-squares method suggested by Lilly (1992). This gives the
model coefficient as

C(x, t) = − DijMij

2MijMij

, (5.10)

where

Dij = ûiuj − ̂̃uiũj , (5.11)

and

Mij = ∆̂2|Ŝ |Ŝij − ∆2 |̂S |Sij , (5.12)

and it has been assumed that the variation of C(x, t) at the level of the test filter is
small so it can be taken out of the filtering operation.

The dynamic two-component model (DTM) given by equations (5.8) and (5.10)–
(5.12) for sharp (Fourier) filters offers a number of advantages over pure eddy-viscosity
parameterizations. In particular, the model is applicable at a local level and naturally
accounts for backscatter based on the dynamics of the resolved scales. Unlike dynamic
eddy-viscosity models, DTM does not require any averaging in space or time in the
expression for the model coefficient. This is because the eddy-viscosity term is used
only to account for the low-intensity forward transfers of energy, while the intense
forward and reverse transfers are represented by the local-interactions term. This
significantly reduces the variability in the model coefficient. The inclusion of the
local-interactions term also provides a natural means of accounting for backscatter.

6. Model evaluation by a priori tests
The performance of the dynamic two-component model given by equations (5.8)

and (5.10)–(5.12) was evaluated in a priori tests using the DNS database of the jet
at time tU0/z0 = 100. The results are compared to DNS, the classical Smagorinsky
model (SM) given by

τ∗ij = −2C∆2|S |Sij , (6.1)

where C = 0.01, and the dynamic Smagorinsky model (DSM) (Germano et al. 1991;
Lilly 1992) given by (6.1), where

C = − 〈FijMij〉
2〈MijMij〉 , (6.2)

Fij = ûiuj − ̂̂uiûj , (6.3)

Mij = ∆̂2|Ŝ |Ŝij − ∆2 |̂S |Sij , (6.4)

and 〈·〉 denotes averaging in the homogeneous (x, y) directions. This averaging is
needed in DSM to avoid large negative values of C , which are unphysical and can
lead to numerical instability in practice (Germano et al. 1991; Lund et al. 1993). The
a priori tests were performed using sharp (Fourier) filters applied with the same filter
widths in all three directions. To facilitate filtering in the lateral direction, the jet was
truncated to −3.2 < z/zm < 3.2 and the data interpolated onto a uniform Fourier

grid. The LES filter G was applied at kmη = 0.18, and the auxiliary filters Ĝ and G̃
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Figure 11. Profiles of (a) mean subgrid-scale dissipation, and (b) mean subgrid-scale stress fields
predicted in a priori tests compared to DNS: · · ◦ · ·, DNS; ——, DTM; − · −, DSM; − · ·−,
Smagorinsky model (with C = 0.01).

were applied at k̂/km = 0.5 and k̃/km = 0.75, respectively. The filter widths ∆ and ∆̂
were defined as the geometric mean of the uni-directional filters.

Figure 11 shows the predictions of these models for the mean subgrid-scale dissi-
pation, 〈εS〉, and the mean subgrid-scale stress, 〈−τ13〉, in the jet, compared to DNS
results. Both DTM and DSM give reasonably accurate predictions of these mean
quantities, with DTM giving slightly better results.

In addition to the mean quantities, DTM also correctly predicts the breakdown of
the net transfer into forward and reverse contributions. This is a major shortcoming
of pure eddy-viscosity models, which are inherently ‘averaged’ and as such can only
yield the net transfer. The predictions of DTM for the net subgrid-scale dissipation,
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Figure 12. The net subgrid-scale dissipation and its breakdown into forward (denoted by 4) and
reverse (denoted by 5) transfers predicted by DTM in a priori tests compared to DNS. Also
shown are the contributions of each of the ‘local-interactions’ and ‘eddy-viscosity’ terms in DTM
to forward (4) and reverse (5) transfers. · · ◦ · ·, DNS; ——, DTM; −−−, eddy-viscosity term in
DTM; − · −, local-interactions term in DTM.

〈εS〉, and its breakdown into forward, 〈ε+
S 〉, and reverse, 〈ε−S 〉, contributions are

compared to DNS results in figure 12. Also shown are the contributions of each
of the local-interactions and eddy-viscosity terms in DTM to these forward and
reverse transfers. The model predictions agree with the DNS results for both the net
subgrid-scale dissipation and its breakdown into forward and reverse transfers. The
eddy-viscosity and local-interactions terms each contribute nearly equally (48% and
52%, respectively) to the forward transfers, while the reverse transfers are almost
entirely accounted for by the local-interactions term. There is also a small reverse
transfer arising from the eddy-viscosity term, reflecting the presence of negative
values of C in the domain. In LES applications, this contribution is removed based
on the argument that the role of the eddy-viscosity term in DTM is to account for
forward transfers of energy, not backscatter. Accordingly, at each time-step we set
νt = 0 wherever it becomes negative, and account for the energy associated with these
reverse transfers by uniformly weighting the eddy viscosity in regions of positive νt
such that the net SGS dissipation in the domain by the eddy viscosity remains the
same. The latter step is only a small correction, as the energy associated with negative
values of νt is small. Nevertheless, it results in a marginal improvement (on the order
of ∼ 5%) in the predicted LES statistics.

Figure 13 shows the p.d.f. of the model coefficient in DTM (equation (5.10))
compared to that which would be obtained in DSM without averaging (equation
(6.2) without any averaging of the numerator or the denominator). The inclusion
of the local-interactions term in DTM significantly reduces the variability of the
model coefficient compared to DSM. This eliminates the need for averaging the
model coefficient. The negative values of C occurring in DTM for the most part (in
∼ 90% of the points) have a small magnitude such that ν + C∆2|S | remains positive.
Nevertheless, in view of the role of the eddy-viscosity term in DTM, all negative values
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Figure 13. Probability density function of the model coefficient C in DTM compared to DSM
(without any spatial averaging) predicted in a priori tests: ——, DTM; − · −, DSM.

of C are removed using the procedure described above. A more rigorous procedure
for preventing negative values of C , such as one based on a constrained variational
formulation (Ghosal et al. 1995), could be implemented. However, considering the
additional complexity of this procedure and the insensitivity of the LES results to the
details of this clipping, this has not been attempted here.

The local structure of the subgrid-scale dissipation field, εS = −τijS ij , predicted
by DTM is compared to results from DNS, DSM, and the Smagorinsky model in
figure 14. The DTM predictions are in reasonable agreement with DNS and show
regions of both forward and reverse transfer (the full-domain correlation coefficients
between the two fields is ∼ 0.3). In contrast, the subgrid-scale dissipation field pre-
dicted by DSM is essentially the same as that predicted by the classical Smagorinsky
model and consists entirely of forward transfers of energy. The more accurate mod-
elling of the local structure of the subgrid-scale dissipation field in DTM leads to
improved predictions of the structures, spectra, and statistics in LES, and enhances
the robustness of the model at marginal LES resolutions.

7. LES applications
7.1. LES of transitional and turbulent flow in a jet

As a first LES test case, we apply DTM to simulate the transitional and turbulent
temporally growing planar jet flow described in § 2.1. The results are compared to
those from DNS and LES with DSM. A coarse DNS (LES with no model) at the
effective resolution of the LES is also performed to evaluate the effectiveness of the
SGS models.

The simulations were performed using pseudo-spectral methods, and employed
Fourier series in the homogeneous (x and y) directions and mapped Chebyshev
polynomials in the lateral (z) direction. We solve the set of equations (1.2) and (1.5),
with τij given by (5.8) and (5.10)–(5.12) for DTM and (6.1)–(6.4) for DSM, and all
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Figure 14. Local structure of the subgrid-scale dissipation field in a planar cut through the jet
predicted by a priori tests for kmη = 0.18 compared to DNS: (a) DNS, (b) DTM, (c) DSM, and
(d) Smagorinsky model (with C = 0.01). Also tabulated are the volume averages 〈εS 〉V , 〈ε+

S 〉V and
〈ε−S 〉V predicted by each model compared to DNS.

nonlinear terms represented in rotational form. The computations were performed
with a resolution of 32× 32× 65 and were de-aliased using the 1/2 rule, resulting in
an effective resolution of 16 × 16 × 65. The equations were advanced in time using
the three-step splitting method suggested by Yakhot et al. (1989). The domain sizes
in all three directions were the same as in DNS. Filtering was applied only in the
homogeneous directions. The LES filter was applied at kx = ky = 8 and the auxiliary

filters at k̃i/ki = 0.75 and k̂i/ki = 0.5, respectively. The equivalent filter widths ∆ and

∆̂ were defined as the geometric mean of the uni-directional filter widths. With these
conditions, the LES filters had characteristic widths of ∆x = ∆y = 32η and ∆z = 8η.
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Figure 15. Time evolution of the kinetic energy of two- and three-dimensional disturbances in the
jet predicted by LES compared to DNS: ◦, DNS; ——, DTM; − · −, DSM; · · × · ·, no model.
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Figure 16. Time evolution of the jet half-width, jet centreline velocity, and jet Reynolds number
predicted by LES compared to DNS: ◦, DNS; ——, DTM; − · −, DSM; · · × · ·, no model.

Initial conditions for the LES runs were obtained from the DNS velocity field at the
time tU0/z0 = 15.

The predictions of LES for the evolution of the energy of two- and three-
dimensional disturbance fields, the jet half-width, zm(t), the jet centreline velocity,
Uc(t), and the jet Reynolds number, Rezm = Uczm/ν, are compared to results from
DNS in figures 15 and 16. The different stages in the evolution of the jet from its
initially laminar state (tU0/z0 < 30) through the transition period (30 < tU0/z0 < 60)
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Figure 17. Mean turbulence statistics in the fully developed turbulent jet predicted by LES
compared to DNS: ◦, DNS; •, filtered DNS; ——, DTM; − · −, DSM; · · × · ·, no model.

to the final equilibration into a fully developed turbulent state (tU0/z0 > 70) are
displayed in these time histories. The overall energetics of the velocity fluctuations
(figure 15) are fairly accurately predicted by both DTM and DSM. However, DTM
provides the most accurate prediction of the mean structure of the jet (figure 16).
DSM, as in no model, over-predicts the jet half-width and under-predicts its centreline
velocity. Since the jet half-width and centreline velocity are controlled by the dynamics
of the large-scale vortical structures in the flow, the success of DTM in predicting
these quantities reflects its ability to correctly capture the large-scale vortical structure
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Figure 18. Three-dimensional kinetic energy spectrum in the fully developed turbulent jet
predicted by LES compared to DNS: ◦, DNS; ——, DTM; − · −, DSM; · · × · ·, no model.

of the jet. This is a consequence of the more accurate modelling of the local structure
of the SGS dissipation field in DTM.

The mean turbulence statistics in the fully developed turbulent jet (at tU0/z0 = 100)
are shown in figure 17. The results are compared to the DNS data filtered at the same
conditions as those used in the LES. For reference, the unfiltered DNS data are also
shown. DSM under-predicts the mean centreline velocity, over-predicts the turbulence
intensities, and gives an incorrect shape for the distributions of the streamwise and
lateral turbulence intensities in the central portion of the jet. All of these results are
improved with DTM, which gives better agreement with the DNS results for both the
mean velocity and the turbulence intensities and predicts the correct shape for the
distributions of the turbulence intensities in the jet.

Figure 18 shows the three-dimensional kinetic energy spectrum in the fully devel-
oped turbulent jet (at tU0/z0 = 100). The best agreement with the DNS results is, once
again, obtained with DTM. DSM under-predicts the disturbance kinetic energy at
the low wavenumbers and over-predicts it at the high wavenumbers. This is expected
and a consequence of the averaged nature of eddy-viscosity models. These models,
in effect, approximate the true curve of the spectral eddy viscosity ν(k|km) (figure 4)
by a k-independent average eddy viscosity, giving the same net dissipation. Such an
averaged eddy viscosity is by construction over-dissipative at the low wavenumbers
and under-dissipative at the high wavenumbers. DTM circumvents this problem by
modelling the cusp separately from the low-wavenumber asymptote. This gives the
model the ability to more accurately predict the modal distribution of the turbulence
kinetic energy.

The difficulty experienced by DSM in capturing the dynamics of the jet can be
attributed to its averaged nature. This seemingly simple flow in reality provides
a stringent test of SGS models because its mean statistics are controlled by the
dynamics of the large-scale vortical structures in the jet. Accurate prediction of these
structures requires SGS models which are accurate at the local level. This is one area
in which DTM provides an advantage over pure eddy-viscosity models.
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Figure 19. Time evolution of the mean wall-shear stress in the transitional and turbulent channel
flow predicted by (a) resolved LES, and (b) coarse LES compared to DNS: ◦, DNS; ——, DTM;
− · −, DSM.

7.2. LES of transitional and turbulent channel flow

As a second test case, we evaluate the performance of DTM in LES of a transitional
and turbulent channel flow. The channel is assumed to be periodic in the streamwise
(x) and spanwise (y) directions with periodicity lengths of Lx = Ly = 2πh/α =
2πh/β, where h denotes the channel half-width and α = β = 1.25. The simulations
were performed using the pseudo-spectral methods described in § 7.1 and imposed a
constant flow rate in the channel. The Reynolds number of the flow based on bulk
velocity and channel half-width was Rem = Umh/ν = 3300, which corresponds to a
Reτ = uτh/ν ∼ 210 in the fully developed turbulent channel. The performance of
DTM was evaluated through comparisons with results from DSM and DNS. The
DNS of channel flow was performed with a resolution of 64 × 128 × 129, resulting
in grid spacings of ∆+

x ≈ 16, ∆+
y ≈ 8, and 0.065 < ∆+

z < 5.2 in the turbulent channel.
The LES were performed at two resolutions, 16×64×65 and 16×32×65. The lower
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Resolved LES Coarse LES

DNS Dean DTM DSM DTM DSM
Cf × 103 8.08 8.08 8.00 7.57 7.43 6.49
Uc/Um 1.17 1.16 1.16 1.15 1.17 1.19

Table 1. The friction coefficient Cf and centreline to bulk velocity ratio Uc/Um predicted by LES
compared to DNS and Dean’s correlation.

resolution run was performed to evaluate the degradation of the results at marginal
LES resolutions. Both the DNS and the LES runs were de-aliased in the homogeneous
directions using the 2/3 rule. Filtering was performed using sharp (Fourier) filters
and was applied only in the homogeneous (x and y) directions. In the well-resolved

LES, the filters ki/k̃i/k̂i were placed at 5/4/3 in the x-direction, and 20/16/10 in the
y-direction. In the coarse LES, these filters were placed at 5/4/3 and 10/8/5 in the

x- and y-directions, respectively. The effective resolution in LES was ∆
+

x ≈ 100, and

∆
+

y ≈ 25 in the well-resolved computations, and ∆
+

x ≈ 100, and ∆
+

y ≈ 50 in the
coarse computations. Both the DNS and LES runs were started from laminar flow
on which a combination of two- and three-dimensional least-stable eigenmodes of the
Orr–Sommerfeld equation were superimposed.

The time evolution of the mean wall-shear stress in the channel predicted by LES is
compared to DNS results in figure 19. The wall-shear stress remains nearly constant
for tU0/h < 50 when the disturbance field is still infinitesimal, experiences a rapid
rise during the transition period 60 < tU0/h < 85, reaches its peak at tU0/h ∼ 85,
and eventually equilibrates to a fully developed turbulent state for tU0/h > 120. The
average (averaged over 160 6 tUo/h 6 250) skin-friction coefficient, Cf = 〈τw〉/ 1

2
ρU2

m,
and the ratio, Uc/Um, of the mean centreline velocity to the bulk velocity in the
fully developed turbulent channel are compared to results from DNS and Dean’s
correlation in table 1. With DTM, the predicted friction coefficient and centreline
velocity are within 1% of the DNS results in the well-resolved computations, and
within 8% of the DNS results in the coarse LES. With DSM, the friction coefficient is
under-predicted by 6% in the well-resolved computations, and by 20% in the coarse
LES. The onset of transition and the peak of the wall-shear stress are accurately
predicted by both models in the well-resolved computations. In the coarse LES, both
models under-predict the magnitude of this peak and its occurrence is delayed when
DSM is used as the model.

Figure 20 shows the mean turbulence statistics in the fully developed turbulent
channel compared to the DNS data filtered at the same conditions as those used in
LES. For reference, the unfiltered DNS data are also shown. With DTM, the predicted
mean velocity and turbulence intensities are in agreement with the filtered DNS data
in the well-resolved computations (figure 20a, b). DSM fails to produce a logarithmic
layer with a constant slope in the mean velocity, over-predicts the magnitude of the
streamwise turbulence intensity, and places the peak of the streamwise turbulence in-
tensity further away from the wall than in DNS. At marginal resolutions (figure 20c, d),
the LES predictions become less accurate with both models. However, the DTM pre-
dictions remain reasonably accurate, while those from DSM markedly deteriorate.

The near-wall flow structure obtained in the well-resolved LES is compared to
DNS results in figure 21. The near-wall structure is examined through the two-point
correlations of the streamwise velocity fluctuations at z+ = 10 for points separated in
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the spanwise direction. The location of the minimum in this correlation denotes half
of the mean spacing between the high- and low-speed streaks in the wall layer. With
DTM, the predicted mean streak spacing is ∼ 100 wall-units, in agreement with DNS
and known experimental results. In contrast, DSM predicts a mean streak spacing
∼ 160 wall units.

Overall, these results demonstrate the ability of DTM to accurately predict the mean
statistics, spectra, and structure in LES without excessive resolution requirements.

8. Extension to graded filters
In §§ 5–7, the two-component parameterization (5.1) was developed and tested for

sharp (Fourier) filters. Sharp filters do not provide an overlap between the resolved
and subgrid scales of motion. Consequently, the local-interactions term, τ′ij , in the two-
component parameterization (5.1) had to be approximated by that at a neighbouring
cutoff within the resolved scales. This is not necessary with graded filters, which
provide an overlap between the resolved and subgrid scales. In this section, we discuss
the extension of the two-component parameterization (5.1) to graded filters.

For graded filters, the true SGS stress is given by

τij = ηij − Lij = (uiuj − uiuj)− (uiuj − uiuj), (8.1)

where the overbar denotes a graded LES filter of characteristic scale k in the wavenum-
ber space. The true SGS stress arising from local interactions between the resolved
and subgrid scales near the LES filter is, by analogy with (5.2), given by

τ′ij = τtij = ηtij − Ltij = (ǔiǔj − ǔiǔj)− (ǔiǔj − ǔiǔj), (8.2)

where ǔi represents the velocity field truncated to (i.e. filtered with a sharp filter at)
kt & k. Substituting (8.1) and (8.2) into (5.1), approximating Ltij ≈ Lij , and using a
Smagorinsky parameterization for the eddy-viscosity term gives the formulation of
the two-component model for graded filters as

η∗ij = −2C∆
2|S |Sij + (ǔiǔj − ǔiǔj)∗. (8.3)

This formulation is readily available in pseudo-spectral computations, where ǔi can
easily be recovered from the quantity computed at the grid scale.

The major difference between this parameterization and classical mixed models is
in the formulation of the local-interactions term. In traditional mixed formulations,
the local interactions are computed based on a similarity argument as CL(uiuj − uiuj)
(Bardina et al. 1980; Zang et al. 1993; Salvetti & Banerjee 1995) or as CL(ũiuj − ũiũj)
(Liu et al. 1994), where the tilde represents a graded filter similar in shape but of a
larger width (typically 2∆). With CL = 1 this term represents the nonlinear interactions
between the scales represented in ui (or ũi) and those between ui and ui (or between
ũi and ui). This provides only a partial representation of the local interactions. As
a result, when CL is left as an undetermined model coefficient (Salvetti & Banerjee
1995), dynamic procedures predict the optimal value of CL to be higher than 1
(around 1.4 for a box filter). However, even with CL computed dynamically, such
a similarity term can provide only a partial representation of the local interactions.
Recovering the full local interactions from the similarity term requires an appropriate
weighting (depending on the shape of the filter) of the different wavenumbers in the
overlap zone between the resolved and subgrid scales. Alternatively, one can directly
obtain the local interactions based on (8.3) using dissimilar filters (one sharp, one
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graded). Preliminary applications of (8.3) in LES show this formulation to be superior
to existing mixed models. These results will be reported in a future communication.

9. Summary and conclusions
The dynamics of subgrid-scale energy transfer in turbulent shear flows has been

investigated using a DNS database of a temporally growing, planar turbulent jet at
Reλ ≈ 110. In agreement with earlier analytical predictions (Kraichnan 1976), we
find subgrid-scale energy transfer to arise from two distinct effects: one representing
non-local transfers of energy from the resolved scales to disparate subgrid scales, the
other representing local two-way exchanges of energy between the resolved scales and
subgrid wavenumbers near the cutoff. In the physical space, the former is manifested
as low-intensity, forward transfers of energy; the latter gives rise to intense and
coherent regions of forward and reverse transfer, of scale comparable to the size of
the LES cutoff, which are spatially correlated with the organized vortical structures at
that scale. The local interactions arise primarily from a very narrow band of subgrid
wavenumbers between km and 1.25km, not the whole octave between km and 2km as
previously suggested. This opens up new possibilities for modelling these interactions.

A dynamic two-component model (DTM), incorporating these effects is developed
for sharp (Fourier) filters. In this model, the non-local forward transfers of energy are
parameterized using an eddy-viscosity term, while the local interactions are modelled
based on the dynamics of the resolved scales near the LES cutoff. This model
offers many advantages over pure eddy-viscosity parameterizations. In particular, the
model is inherently local and accounts for backscatter based on the dynamics of the
resolved scales. A priori tests of the model show that it predicts the mean subgrid-scale
dissipation and the mean subgrid-scale stresses in better agreement with DNS results
than dynamic eddy-viscosity models. In addition, the model correctly predicts the
breakdown of the net transfer into forward and reverse contributions and gives a
local structure of the subgrid-scale dissipation field in general agreement with DNS.
The inclusion of the local-interactions term results in a much narrower distribution of
model-coefficient values compared to pure eddy-viscosity models. This eliminates the
need for averaging the model coefficient, making the model inherently local and thus
suitable for application to LES of complex-geometry flows. In applications to LES of
transitional and turbulent jet and channel flows, DTM predicts the statistics, structure
and spectra in better agreement with DNS results than the dynamic Smagorinsky
model (DSM). In addition, the model remains robust at marginal resolutions.

Extension of the model to graded filters suggests a different construction of the
local-interactions term than that used in existing mixed models based on similarity
arguments.
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Appendix A. Subgrid-scale transfer in the spectral space
In analysing the dynamics of subgrid-scale energy transfer in the spectral space,

we consider the energetics of the turbulent velocity fluctuations separate from that
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of the mean flow. This is done in order to preserve certain conservation properties
and to allow comparisons with analytical results derived for isotropic turbulence. The
equation governing the dynamics of the fluctuating velocity u′α is given by (Hinze
1975), (

∂

∂t
− ν∇2

)
u′α(x, t) = −N ′α(x, t)−N ′Mα (x, t), (A 1)

where

N ′α(x, t) =
∂

∂xβ
(u′αu

′
β) +

1

ρ

∂p′′

∂xα
(A 2)

with

1

ρ

∂2p′′

∂xα∂xα
= − ∂2

∂xα∂xβ
(u′αu

′
β)

represents the mutual nonlinear interactions between the turbulent velocity fluctua-
tions, and

N ′Mα (x, t) = u′3
∂U

∂x3

δα1 +U
∂u′α
∂x1

+
∂

∂x3

(〈u′αu′3〉) +
1

ρ

∂p′M

∂xα
(A 3)

with

1

ρ

∂2p′M

∂xα∂xα
= −2

∂u′3
∂x1

∂U

∂x3

+
∂2

∂xα∂x3

(〈u′αu′3〉)
represents the nonlinear interactions of the fluctuating velocity with the mean flow.
The governing equation for the large-scale fluctuating velocity u′Lα (x, t) can be obtained
by a truncation of the equation (A 1) to the large scales(

∂

∂t
− ν∇2

)
u′Lα (x, t) = −N ′L|Lα (x, t)−N ′L|Sα (x, t)−N ′MLα (x, t), (A 4)

where

N ′L|Lα (x, t) =
∂

∂xβ
(u′Lα u

′L
β )L +

1

ρ

∂

∂xα
p′′L|L (A 5)

with

1

ρ

∂2p′′L|L

∂xα∂xα
= − ∂2

∂xα∂xβ
(u′Lα u

′L
β )L

represents the large-scale nonlinear interactions between the large-scale velocity fluc-
tuations,

N ′L|Sα (x, t) =
∂

∂xβ
(u′αu

′
β − u′Lα u′Lβ )L +

1

ρ

∂

∂xα
p′′L|S (A 6)

with

1

ρ

∂2p′′L|S

∂xα∂xα
= − ∂2

∂xα∂xβ
(u′αu

′
β − u′Lα u′Lβ )L

represents the large-scale nonlinear interactions of the large-scale fluctuating velocity
field with the subgrid scales, and N ′MLα (x, t) represents the large-scale nonlinear
interactions of the large-scale fluctuating velocity field with the mean flow.

The subgrid-scale transfer of energy TS (k|km) to a resolved scale k due to nonlinear
interactions with the subgrid scales can be obtained from (A 4) by considering the
evolution equation for kinetic energy of the large-scale turbulent velocity fluctuations
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in the wavenumber space(
∂

∂t
+ 2νk2

)
EL(k, t) = TL(k|km, t) + TS (k|km, t) + TML(k|km, t), (A 7)

where

TL(k|km, t) = − ∑
k− 1

2<|k|6k+ 1
2

Re {ŭ′∗Lα (k, t)N̆ ′
L|L
α (k, t)} (A 8)

represents the transfer of energy to the scale k as a result of mutual interactions
between the large-scale velocity fluctuations,

TS (k|km, t) = − ∑
k− 1

2<|k|6k+ 1
2

Re {ŭ′∗Lα (k, t)N̆ ′
L|S
α (k, t)} (A 9)

represents the transfer of energy to the scale k as a result of interactions with the
subgrid-scale velocity fluctuations, TML(k|km, t) represents the transfer of energy to
the scale k as a result of interactions with the mean flow and ˘ and * denote Fourier
transform and complex conjugate, respectively.

An analogous quantity, t
(n|m)
s [i], representing the transfer of energy to a resolved

scale n (corresponding to all modes with wavenumber k − 1
2
∆k < |k| 6 k + 1

2
∆k, with

k = 2π/2nh and ∆k = k ln 2 ) at location 2nhi due to dynamical interactions with the
subgrid scales (all modes with wavenumber |k| > km = 2π/2mh) can also be defined
using the wavelet analysis as

t(n|m)
s [i] = −

7∑
q=1

u′Lα
(n,q)

[i]N ′L|Sα

(n,q)
[i], (A 10)

where u′Lα
(n,q)

is the wavelet transform of the large-scale disturbance velocity and

N ′L|Sα

(n,q)
[i] is the wavelet transform of the nonlinear term given by equation (A 6).

Note that, for consistency of results, the resolved and subgrid scales are defined using
a sharp (Fourier) filter even when a wavelet analysis is used.

Appendix B. Subgrid-scale transfer in the physical space
In analysing the dynamics of subgrid-scale energy transfer in the physical space, we

do not separate the energetics of the large-scale turbulent velocity fluctuations from
that of the mean flow. This is done in order to remain consistent with the formulation
of LES equations in the physical space, in which the subgrid-scale stresses represent
the effect of the subgrid scales on the full resolved-scale flow field. The equation
governing the dynamics of the large-scale flow field in the physical space is given by
the filtered Navier–Stokes equations(

∂

∂t
− ν∇2

)
uLα (x, t) = −NL|Lα (x, t)−NL|Sα (x, t), (B 1)

where uLα (x, t) is the resolved-scale velocity,

NL|Lα (x, t) =
∂

∂xβ
(uLα u

L
β )L − 1

ρ

∂pL|L

∂xα
(B 2)
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with

1

ρ

∂2pL|L

∂xα∂xα
= − ∂2

∂xα∂xβ
(uαuβ)L

represents the large-scale mutual nonlinear interactions of the resolved scales, and

NL|Sα (x, t) =
∂

∂xβ
(uαuβ − uLα uLβ )L +

1

ρ

∂

∂xα
pL|S (B 3)

with

1

ρ

∂2pL|S

∂xα∂xα
= − ∂2

∂xα∂xβ
(uαuβ − uLα uLβ )L

represents the large-scale nonlinear interactions of the resolved flow with the subgrid
scales.

The equation governing the energetics of the resolved-scale velocity field in the
physical space can then be obtained from equation (B 1) by considering the evolution
of the kinetic energy of the resolved scales

∂

∂t

(
uLα (x, t)

2

)2

= TL(x, t) + TS (x, t) + νuLα ∇2uLα , (B 4)

where

TL(x, t) = −uLα (x, t)NL|Lα (x, t) (B 5)

represents transfer of energy to the large scales due to mutual nonlinear interactions
between the resolved scales, and

TS (x, t) = −uLα (x, t)NL|Sα (x, t) (B 6)

represents the transfer of energy to the large scales due to nonlinear interactions
with the subgrid scales. The quantity TS (x, t) given by equation (B 6) represents the
total transfer of energy in the physical space due to interactions with the subgrid
scales. Using equations (B 6) and (B 3), TS (x, t) can be broken down into a sum of
two redistribution terms (with zero global mean) plus a true drain term, representing
the dissipation of large-scale kinetic energy due to subgrid-scale interactions,

TS (x, t) = − ∂

∂xβ
(uLα ταβ)− ∂

∂xα
(uLα p

L|S)− εS (x, t) (B 7)

where

εS (x, t) = −ταβSLαβ (B 8)

represents the subgrid-scale dissipation, and ταβ(x, t) = (uαuβ − uLα uLβ )L and

SLαβ =
1

2

(
∂uLα
∂xβ

+
∂uLβ
∂xα

)
represent the subgrid-scale stress and the large-scale strain rate tensors, respectively.
In considering the dynamics of subgrid-scale energy transfer in the physical space,
it is customary to neglect the redistribution terms and consider only the dynamics
of subgrid-scale dissipation. In keeping with this tradition, we have also based our
discussion of subgrid-scale energy transfer in the physical space on the subgrid-scale
dissipation εS (x, t) instead of the total transfer TS (x, t).
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